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Foreword

FOREWORD

This study is part of the PTDC/SAU-ESA/101228/2008 project — Forensic
Entomology: Morphometric and Molecular databank (mtDNA) to identify species
(Diptera and Coleoptera) with forensic interest — funded by Fundag¢do para a
Ciéncia e Tecnologia (FCT).

This thesis was designed based on the preparation of two papers to be
submitted to international journals. However, since this is an academic work (to
get a master degree) it was considered important to devise a general introduction
and a final consideration.

The articles are presented according to the standards of the journals for

which these will be submitted:

e Journal of Forensic Sciences (American Academy of Forensic Sciences)

- Cytochrome c oxidase I effectiveness as a marker for insects’ identification;

- Forensic relevant insects’ identification through GenBank and BOLD

databases.
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RESUMO

A Entomologia Forense é a ciéncia que aplica o conhecimento sobre os
insectos, e outros artréopodes, em procedimentos juridico-legais. O primeiro passo
a ser tomado em Entomologia Forense é a identificacdo das espécies,
normalmente realizada através de caracteres morfométricos, utilizando chaves
dicotomicas de identificacdo; no entanto, a observacdo da morfologia é um
método, por vezes, demorado e inconclusivo. Por outro lado, os métodos
moleculares fornecem wuma identificacdo rapida e precisa, possibilitam a
1dentificacdo dos insectos em qualquer estadio de desenvolvimento, incluindo os
estadios larvares, e podem ser utilizados independentemente das condicées de
preservacao dos exemplares.

Na verdade, as metodologias para identificacdo molecular de espécies tém
sofrido uma grande evolucédo e, actualmente, o DNA barcoding é considerado
uma ferramenta muito Gtil na identificacdo de espécies. Este conceito baseia-se
na amplificacdo e sequenciacdo de um pequeno segmento de DNA - conhecido
como sequéncia barcode - de uma regido padrao do genoma. Varios estudos
sugerem o uso da sequéncia que codifica para a subunidade I da proteina
citocromo ¢ oxidase (COI) como o marcador de DNA adequado para o DNA
barcoding. A identificacio de espécies através desta nova ferramenta baseia-se
na amplificacio e sequenciagio deste fragmento; uma vez obtida a informacao da
sequéncia do espécime-alvo é possivel compara-la com sequéncias de referéncia,
isto é, sequéncias de espécies previamente identificadas, ja existentes numa
biblioteca digital.

A 1identificacdo de espécies através do DNA barcoding implica, numa
analise filogenética, que cada espécie surja como um grupo monofilético. Apesar,
deste novo conceito se basear no uso de métodos de construcdo de arvores
filogenéticas, nido deve ser interpretado como tal, uma vez que a sequéncia
barcode nao apresenta, frequentemente, um sinal filogenético suficiente para
determinar relacoes evolutivas. Um outro critério para a delineacao de espécies
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assenta em valores limite para as divergéncias nucleotidicas intra e
interespecificas. Um dos limites é de 3% (valor estabelecido para insectos), em
que valores de divergéncia intra-especifica abaixo deste limite determinam uma
Unica espécie e valores de divergéncia interespecificas acima, apontam para
diferentes espécies. O outro limite, que surge como uma actualizagao do primeiro,
sugere que a média da divergéncia nucleotidica entre espécies pertencentes ao
mesmo género deve ser 10 vezes superior a média da divergéncia intra-especifica
encontrada para as mesmas espécies. A observacao destes trés critérios permite,
assim, determinar se estamos perante a mesma espécie ou espécies diferentes

O Barcode of Life Data System (BOLD) é um software responsavel pela
gestao de dados obtidos através da ferramenta DNA barcoding. O sistema de
1dentificacao do BOLD é a unidade funcional para a identificacao de espécimes
no qual, a sequéncia obtida é submetida e comparada com as sequéncias
referéncia, a semelhanca dos sistemas utilizados noutros bancos de dados para a
1dentificacdo de espécies (por exemplo, a base de dados GenBank do National
Center for Biotechnology Information, NCBI).

A existéncia de evidéncias entomoldgicas pode ser de grande importancia
para casos forenses. De facto, estas podem fornecer informagoes importantes que
poderao orientar o decorrer da investigacao criminal.

A criacido e implementacdo de uma Base de Dados de espécies de insectos
é um passo importante para a Entomologia Forense. Com efeito, qualquer pais
que possua um servico de Entomologia Forense eficaz e cientificamente bem
suportado deve ter um conhecimento abrangente da diversidade de insectos. O
uso do DNA barcoding sugere a sua utilidade na identificagdo de espécies de
Iinsectos encontrados em cenarios forense. Apesar das vantagens cientificas e
pragmaticas existentes no conhecimento da diversidade de insectos em qualquer
regiao do globo, a utilizagdo deste marcador genético em bancos de dados exige
que seja determinada a sua eficacia na distin¢ao entre espécies.

Este estudo foi1 desenvolvido e escrito com vista a preparacao de dois

artigos cientificos que serdo submetidos a revistas internacionais da
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especialidade. Neste sentido, a presente dissertacdo esta dividida em quatro
partes.

O Capitulo 1 refere-se a Introducdo geral que assenta na revisao
bibliografica e estado de arte sobre a Entomologia Forense e do DNA barcoding, e
que da o fundamento ao trabalho desenvolvido.

O Capitulo 2 diz respeito ao primeiro artigo cientifico que tem como titulo
“Cytochrome c oxidase I effectiveness as a marker for insects’ identification”. Este
capitulo tem como principais objectivos determinar as sequéncias
correspondentes a regido do gene COI, de cada espécime, utilizada para efeitos
de DNA barcoding, isto é, um fragmento de 658 pares de bases correspondente a
regido inicial do gene COI e, testar a eficacia deste para a identificacdo de
espécies de dipteros com relevancia forense. Aqui foram utilizados 52 individuos
pertencentes a quatro espécies de Diptera, Calliphora vicina (Robineau-
Desvoidy, 1830), Calliphora wvomitoria (Linnaeus, 1758), Lucilia caesar
(Linnaeus, 1758) e Musca autumnalis (De Geer, 1776). Estes espécimes foram
recolhidos e morfologicamente identificados num estudo desenvolvido
anteriormente. A amplificacdo, com primers universais, e a sequenciaciao da
regido em estudo foram facilmente obtidas. Este facto é muito vantajoso em
situacdes que necessitam de uma maior rapidez na analise das amostras, como
acontece em situacoes de contexto forense. O estudo filogenético permitiu
1dentificar cada espécie como um grupo monofilético. Por sua vez, a analise das
divergéncias nucleotidicas intra e interespecificas, para as duas espécies do
mesmo género, permitiram confirmar que, para os dois limites utilizados para a
1dentificacdo de espécies através do DNA barcoding, estas sdo espécies
diferentes. Estes resultados mostram a eficacia do COI como marcador genético
para a discriminacao de espécies.

O Capitulo 3 refere-se ao segundo artigo cientifico, e tem como titulo
“Forensic relevant insects’ identification through GenBank and BOLD databases”.
O principal objectivo deste trabalho foi determinar a capacidade destas bases de
dados publicas para a identificacdo de espécies de insectos com interesse forense.

Além disso, os dados foram também utilizados para determinar a eficacia do
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marcador COI. Como anteriormente, todas as amostras foram facilmente
amplificadas e sequenciadas. Os resultados mostraram que foi possivel
1dentificar 67.6% dos individuos, ao nivel da espécie através da base de dados
GenBank. Através da base de dados BOLD foi possivel identificar 58.8% dos
espécimes, também ao nivel da espécie. No total foram identificados 49
espécimes pertencentes a 11 espécies diferentes: Fudasyphora cyanella (Meigen,
1826), Lucilia caesar (Linnaeus, 1758), Pollenia rudis (Fabricius, 1794), Musca
autumnalis (De Geer, 1776), Phaonia subventa (Harris, 1780), Phaonia
tuguriorum (Scopoli, 1763), Helina impucta (Fallén, 1825), Helina evecta (Harris,
1780), Helina reversio (Harris, 1780), Hydrotaea dentipes (Fabricius, 1805) e
Hydrotaea armipes (Fallén, 1825). As sequéncias correspondentes a estas
amostras foram utilizadas, posteriormente, para a analise filogenética e para o
calculo das divergéncias nucleotidicas intra e interespecificas. Na analise
filogenética foi possivel observar situacbes de monofilia para todas as espécies.
No que diz respeito a avaliagao das divergéncias nucleotidicas entre espécies do
mesmo género, os valores limite possibilitaram a discriminacao de cada espécie.
Em suma, estes resultados corroboraram a eficacia do gene COI para
1dentificacdo de espécies.

Por fim, o Capitulo 4 destina-se as Consideracoes Finais, onde é referida
a importancia deste trabalho para a aplicacdo do marcador COI em bases de
dados, utilizadas nao s6 em situacoes de contexto forense mas também para o
conhecimento global da diversidade biolégica bem como a sua importancia para a

contribui¢do de uma base de dados da biodiversidade nacional.

Palavras-chave: Entomologia Forense; DNA barcoding, Citocromo ¢ Oxidase I;

Diptera, Base de Dados, Barcode of Life Data System,; GenBank.
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ABSTRACT

Forensic entomology 1s the science, which applies knowledge of insects
(and other arthropods) to civil proceedings and criminal trials. Indeed, the
existence of entomological evidences can be of great importance to forensic cases,
because they can provide relevant information to delineate the course of the
investigation; however, the species-level identification of specimens found on
corpse is extremely important. Use of cytochrome ¢ oxidase I (COI) as molecular
marker for DNA barcoding project suggests that this approach could be very
useful in forensic scene, where fast and accurate tools for species identification
are essential. Molecular database implementation for insects’ species is a very
1mportant step for the evolution of forensic entomology. Indeed, any country that
wishes to have an effective and scientifically well supported forensic entomology
service must have a comprehensive knowledge of insects’ diversity.The main
goals of this study are to provide evidence of the COI performance to be used as
an effective, reliable and fast tool for an identification database and to determine
what extent Barcode of Life Data System (BOLD) and GenBank databases are
able, at that time, to identify insects’ species with relevance. The COI fragment
proposed for DNA barcode was sequenced and nucleotide sequence divergence
within and between species and phylogenetic analysis were performed. In the
two studies, COI allows observation of species discrimination as strongly
supported monophyletic groups and intra and interspecific nucleotide
divergences confirm the potential of COI in species delimitation. The results also
showed that GenBank allowed to identify more sequences than BOLD, although

the two databases have shown a good ability to identify insects’ species.

Keywords: Forensic Entomology;, Cytochrome c¢ Oxidase I; DNA barcoding;
Database; Barcode of Life Data System,; GenBank; Diptera.
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CHAPTER 1 — GENERAL INTRODUCTION

Entomology is derived from the Greek word entomon (insect) + logos
(word, reason) meaning the study of insects (Gupta and Setia, 2004). Thus,
forensic entomology is the science, which applies knowledge of insects (and other
arthropods) to civil proceedings and criminal trials (Turchetto and Vanin, 2004).

According to Byrd (2006), forensic entomology commonly comprises three
general areas: medicolegal or medicocriminal, urban, and stored product pests.
The medicolegal area investigates the necrophagous feeding insects that colonise
human corpses with legal purposes. The urban forensic entomology works with
the insects that affect man and his immediate environment. Both the civil and
criminal components of this area are involved, since the urban pests feed on both
the living and the dead. Their mandibles can cause damages leading to economic
problems. Besides, they can produce marks and wounds on the skin that may be
misinterpreted as prior abuse. The stored products area deals with food and
drink contamination by insects. The forensic entomology helps on determination
of the insects’ species involved, answers if their presence is accidental or
intentional, and establishes if the levels of insects are allowable (Byrd, 2006).
According to Anderson (1999), the wildlife forensic entomology should also be
considered. This area assumes particular relevance in surveillance and

protection of mistreatment of wild animals in captivity.

1.1 Retrospective

The first documented forensic entomology case is reported by the Chinese
lawyer and death investigator Sung Tzu, in the 13th century. In his book, “Hsi

yuan chi lu” (one possible translation is “The Washing Away of Wrongs”) Sung
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Tzu describes, possibly, the first case in which insects helped to solve a crime
(Benecke, 2001; Amendt et al., 2004; Gupta and Setia, 2004).

During medieval times, beyond the medical and legal experts, sculptors,
painters and poets have closely observed the decomposition of human bodies and

were made realistic and detailed illustrations of corpses containing maggots
(Benecke, 2001) (Figure 1).
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Figure 1. Illustration of corpses containing maggots: (left) "Dance of the Death" (15th century); (right)

grave of Robert Touse (exact time of making unknown) (From: Benecke, 2001).

In 1855, the first modern forensic entomology case appeared, reported by
Bergeret. He used forensic entomology to estimate the postmortem interval
(PMI) (Benecke, 2001). Later, Yovanovich and Mégnin were the first forensic
examiners who tried to evaluate insect succession on corpses, establishing
properly the science of forensic entomology (Amendt et al., 2004) and, in 1894,
Mégnin published his most important book “La Faune des Cadavres”, in which
he explained his theory of eight successional insect’s waves for freely exposed
corpses (Benecke, 2001) and mentioned that on buried bodies insects came in two
waves (Gupta and Setia, 2004). He also described the morphological features of

various classes of insects that helped in their identification (Gupta and Setia,
2004).
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Since the beginning of the 20th century, the interest in matter increased
as well as the knowledge on the properties of insects. By now, forensic
entomology has been accepted in many countries as an important tool and many

studies have been made on the subject.

1.2 Postmortem changes of the human body

After death most animal bodies undergoes a process of decomposition
which results in the gradual dissolution of the tissues (autolysis) into gases,
liquids and salts caused essentially by proteolytic and other enzymes released by
bacteria (Gordon et al., 1988). Alternatively, an abnormal transformation of the
corpse can occur depending on environmental conditions (maceration in
immersed bodies, mummification in a dry environment) (Campobasso et al.,
2001).

During the decomposition, the body temperature decreases, phenomena
known as algor mortis, and the skin color becomes red (livor mortis or lividity).
Another sign of death is the stiffening of the muscle fibers due to the breakdown
of glycogen and the accumulation of lactic acid (rigor mortis). Later skin
slippage, the loosening of the epidermis from the underlying dermis occurs and
hair and nails are easily detached. The production of a large quantity of gases
during putrefaction causes physical distortion of the body, and a green coloration
shows up the superficial blood vessels, the gastrointestinal region and those
portions of the body where livor mortis was most marked. All these changes
occur within the 72-96 h after death. Finally, when the temperature of the body
is at the same level as the environment and following the initial putrefaction, no
reliable estimation of the postmortem interval (PMI) is possible (Amendt et al.,
2004). Following this initial stage, also known as fresh stage, the body suffers
others transformations according to more four main stages: putrefaction, dark

putrefaction, butyric fermentation and dry stage (Bornemissza, 1957).



DNA BARCODING AND FORENSIC ENTOMOLOGY: A MOLECULAR APPROACH FOR DIPTERA SPECIES’ IDENTIFICATION

Chapter 1 - General Introduction

The postmortem decay rate can depend on intrinsic or extrinsic factors.
The intrinsic factors comprise age and constitution of the body, cause of death,
and integrity of corpse (Campobasso et al., 2001). On the other hand, extrinsic
factors like the ambient temperature, the humidity of the atmosphere, the
movement of air or other medium, the state of hydration on the tissues, the
nature of the medium, the nature of the soil and depth really influence the rate
of decomposition (Gordon et al., 1988). The existence of clothes can also slow
down postmortem body cooling and favor the onset of the putrefaction process
and also the animal predators, from arthropods to mammals, can have a

predominant role in the breakdown of the corpse (Campobasso et al., 2001).

1.3 Insects and the corpse

A cadaver constitutes a dynamic system that shelters and supports a rich
community, of which arthropods form an important part, not only because they
consume decomposing tissue but also because they speed up the decomposition
processes (Arnaldos et al., 2004). The colonization of a corpse by arthropods, and
more precisely by insects, persists during the evolution of decomposition from the
first few minutes after death until the bones resemble the bleached white stage

(Haskell et al., 1997).

1.3.1 Role of arthropods in decomposition

The cadaver can be colonized by a variable number of arthropods but
only few species actively participate in cadaver breakdown directly accelerating
the rate of decay (Campobasso et al., 2001).

Each group of arthropods plays a different role in different stages of
decomposition of organic matter. Its development in the cadaver is affected by
several factors, temperature being the most important, affecting the rate of

development and may cause diapause (the complete suspension of development)

5
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(Myskowiak and Doums, 2002). Under favourable conditions, certain species of
flies may lay their eggs or deposit larvae on exposed bodies. In the case of the
egg-laying species, after a variable period, depending mainly upon the
atmospheric temperature, the eggs hatch and the larvae feed upon the tissues,
being loosed a considerable amount of tissue after death (Gordon et al., 1988).
Colonizers species are selectively attracted by the decomposing status of
the carrion. These species form complex communities within necrophagous
species (also known as scavengers) which feed only on decomposing tissues,
predators or parasites of the necrophagous species feeding on other insects or
arthropods, omnivorous species feeding both on decomposing remains and
associated arthropods, and other species which use the corpse as an extension of
their habitat and part of their environment (Amendt et al., 2004). In general,
necrophagous, necrophilous and omnivorous are the most important groups in
forensic studies. Within these, the necrophagous species that appear in a
predictable sequence are the most important for forensic investigations

(Arnaldos et al., 2004).

1.3.2 Forensic evidence

The study of the order of appearance of arthropods on a corpse can
provide conclusive evidence in a forensic case work (Arnaldos et al., 2001).
Indeed, the collection of arthropods found in a corpse has been shown to be very
useful for estimating the time since death (Amendt et al., 2000; Turchetto et al.,
2001; Wells et al., 2001; Arnaldos et al., 2004; Saigusa et al., 2009).

According to Marchenko (2001), the scientific base of using entomological
data in forensic entomology comprises: (1) existence of necrophagous insects in
nature, which use cadaver tissues and pass the major part of their life cycle on
cadavers; (2) relative constancy and specificity of cadaver entomofauna in a
particular geographical region comprising widely spread predominating species;
(3) compliance of species composition of cadaver entomofauna to the degree of its

tissue decomposition and to its location; (4) seasonal alterations of predominant

6
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necrophagous insect species; (5) beginning of insects activity in spring and its
end in autumn as a result of transition to diapauses condition due to changes in
temperature and light-time interval, the values thereof being dependent on
geographical region and being specific for each species; (6) regulation of number
of generations per vegetative period and of species life cycle duration by strictly
definitive species-particular thermal parameters; (7) long preservation of insects

chitin cuticles in nature.

1.3.3 Species with forensic relevance

For the purposes of forensic entomology, the two groups of insects most
important are Diptera (flies) and Coleoptera (beetles) (Haskell et al., 1997).
Depending on the biogeographical region and ecological habitat, different species
of insects are involved in the decay of a corpse; but generally, the first insects of
the succession to colonize a cadaver belong to Diptera order.

In the Diptera, the blowflies species are the most important in forensic
cases. These are the bright metallic blue and green “bottle” flies. Because of their
huge number, the blowflies were the major vector in the degradation of the
cadaver. They are mostly diurnal and usually rest at night (Chaubert et al.,
2003). Within the Diptera order, families like Calliphoridae, Sarcophagidae and
Muscidae have a great relevance as forensic indicators (Arnaldos et al., 2001).
Calliphoridae and Muscidae were found to be the first to colonise the cadaver as
soon as 2-3 h after exposure, followed by Sarcophagidae. The preferred
oviposition sites were generally eyes, nasal openings, mouth, ears, and towards
the end of the fresh stage the genitals (scrotum and vagina). According with the
external temperatures hatching took place in a period ranging from 6 to 40 h
after oviposition, larval development between 3 and 10 days and pupariation 6-
18 days before emergence of adults. Fly activity continued until the dry stage of
decomposition (Campobasso et al., 2001).

The Coleoptera appearance increase both in number of species and in

number of individuals in the later stages of body decomposition. Some Coleoptera
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species colonize corpses as necrophagous insects while others are predators of
Diptera larvae. Beetle activity (mainly Dermestidae) is essentially associated
with the most advanced stages of the degradation process causing the drying out
of semi-liquid soft tissues (Campobasso et al., 2001). In case of Dermestidae, the
larval stage, which are the real indicator of time since death, are characteristic of
the most advanced stages of decomposition, even though adults specimens are
known to appear in corpses from a very early time (Arnaldos et al., 2004).

Other orders of insects known to frequent decomposing carrion include
Hymenoptera (bees, wasps, ants), Lepidoptera (butterflies and moths),
Hemiptera (true bugs), Dictyoptera (cockroaches), and Acari (mites) of the class
Arachnida (spiders, ticks and mites). Of these groups, species of Hymenoptera
are the most common. Wasps and ants are the main predators of fly eggs and
larvae, while bees feed occasionally on fluids. Butterflies and moths have been
observed to feed off of seepage from the carcasses, while bugs have been seen
probing into the carrion, feeding in the underlying tissues. The cockroaches are
usually found to cause superficial feeding artifacts on the surface of the skin of
the corpse. They also may be liable for chewing off the eyebrows and eyelashes.
In the order Acari, certain mite species are found to be associated with
decomposing human remains. However, because they are very small, they are
overlooked as evidence. These arthropods appear when remains are in advanced
decay and drying, and they only are detected because they form aggregates and

appear to be mold or piles of sawdust (Haskell et al., 1997).

1.4 Importance of Forensic Entomology

Forensic entomology appears to provide answers to several questions
that can be raised in a forensic case.

Firstly, forensic entomology intend to establish the time of death, known
as postmortem interval (PMI), or more precisely, how long a carrion has been

exposed in the environment. Indeed, using medical techniques, such as the
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measurement of body temperature or analyzing livor and rigor mortis, time since
death can only be accurately measured for the first 2 or 3 days after death. In
contrast, by calculating the age of immature insect stages feeding on a corpse
and analyzing the necrophagous species present on cadaver, postmortem
intervals from the first day to several weeks can be estimated (Hall and Amendt,
2007). According to Hall and Haskell (cit by Haskell et al., 1997), the PMI can be
determinate using two entomological methodologies. The first is based on a
known insect species life cycle (particularly the blowflies’ life cycle) (Figure 2).
The second method, proposed by Mégnin and others workers, is based on insect
successional waves evaluations, that is, the nature of insect fauna present on the

corpse at any given time (Figure 3).
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Figure 2. Example of a typical blowfly cycle. (1) Oviposition: eggs white to yellow. (2) Eclosion: maggot
emerges. (3) Larva I: length about 10 mm. (4) Larva II: length 20 mm. (a) food in crop. (5) Larva III: length
45 mm, (a) blood in crop; (b) internal skeleton for feeding. (6) Postfeeding larva III: (a) internal feature
obscured. (7) Puparium: changes color with age, (a) early stage; (b) late stage. (8) Eclosion: adult fly
emerges. (9) After hardening, adult male and female flies seek mates. (10) Following copulation, female
completes egg development. (11) Female lays egg mass (oviposits) on carrion/corpse at moist sites. (12)

Female lay several egg masses in her adult life (1 to 3 weeks) (From: Haskell et al., 1997).
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STAGES OF DECOMPOSITION

INSECT FAMILY FRESH | BLOATED | DECAY DRY

CALLIPHORIDAE: (blow flies)
MUSCIDAE: (muscid flies)
SILPHIDAE: (carrion beetles) |
SARCOPHAGIDAE: (flesh flies)
HISTERIDAE: (clown beetles) ———
STAPHYLINIDAE: (rove beetles)
NITIDULIDAE: (sap beetles)
CLERIDAE: (checkered beetles) —
DERMESTIDAE: (dermestid beetles)
SCARABAEIDAE: (lamellicorn beetles)

*Each stage of decomposition is given the same amount of space in this table.

Indicates a small number of individuals present.
= [ndicates a moderate number of individuals present.
BN [ndicates a large number of individuals present.

Figure 3. Example of adult arthropods succession on human cadavers in east Tennessee (during spring and

summer) (From: Rodriguez and Bass, 1983).

Secondly, the ascertainment of postmortem transfer and, consequently,
where was the initial location of the body, if it was hidden and where it was
hidden can be made through the specimens’ collection in the corpse. This is
possible because, despite the fact that some common species are relatively
ubiquitous, the presence of others species found only in certain geographical
areas and occurred in a relatively definable environment (indoor or outdoor;
rural and urban; wet or dry environment) can suggest that body was moved after
death (Haskell et al., 1997). Addicionaly, large accumulations of remnants
(puparia of earlier generations of fly larvae, skins of beetle larvae, the bodies of
dead insects and larvae solid excrements) left by insects occur when a
decomposing body lies for a long period, and this can help to confirm that the
body has lain undisturbed in situ for an extended time (Archer et al., 2005). In
the same way, the presence of live maggots or remnants of insects in the absence
of a dead body at a location is almost certain evidence that some kind of corpse
has been removed from the scene (Campobasso and Introna, 2001).

Forensic entomology is also used in diagnosis of poisoning. Indeed, when
bodies are in a state of advanced decomposition or that are skeletonized the

examination for toxicologically relevant substances may be difficult due to the
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lack of appropriate sources such as tissue, blood or urine (Amendt et al., 2004).
On the other hand, maggots feeding on intoxicated tissues introduce into their
own metabolism drugs and toxins (Campobasso and Introna, 2001) that will be
deposited into fat bodies and the exoskeletal material (chitin) of the insect. These
ingested drugs are sheltered into the chitin and remain in the specimen for an
extended period of time (Haskell et al., 1997). Consequently, a thorough
toxicological analysis of necrophagous larvae and remains from a corpse may be
crucial to the correct determination of death (Campobasso and Introna, 2001).
However, it is known that toxics modified the development rate of maggots and
the use of insect life stage method in calculation of PMI must be careful to avoid
errors in PMI estimation.

Other aim of forensic entomology is the detection of negligence situations
(Benecke and Lessig, 2001; Anderson and Huitson, 2004; Archer et al., 2005).
The early colonization of living people and animals is known as myasis, and the
occurrence of maggots in wounds or natural orifices may indicate negligence and
can help to estimate how long this situation of neglect was verified. Although
this advantage, these colonizers are of the same species found in early
decomposition stage of corpses and this can lead to complications in estimation of
PMI.

Finally, other questions like the time of decapitation and/or
dismemberment, the submersion interval, the identification of specific sites of
injury on the body and postmortem artifacts (both, on the body and in the crime
scene), the suspect association to crime scene, and sexual molestation can be
answered through entomological investigation.

These findings can then inform several stages of the criminal justice
process: the initial scene investigation, the subsequent follow-up investigative

process when evaluating suspects and witnesses, and the criminal trial.
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1.5 DNA barcoding

Accurate identification of an insect specimen is usually a crucial first
step in a forensic entomological analysis. Closely related carrion species can
substantially differ in growth rate, diapause response or ecological preferences.
Species-diagnostic based on anatomical characters are not known for the
immature stages of many forensically important insects and an existing key may
be incomplete or difficult for non-specialists to use (Wells and Stevens, 2008),
and the correct species determination is indispensable in forensic investigations.

The identification of insects based on deoxyribonucleic acid (DNA) can be
performed with immature insects or fragments of puparium and adult insects,
and provide a much faster identification and thus facilitate the successful
conclusion of a case (Harvey et al., 2003; Mazzanti et al., 2010). According to
Amendt et al. (2004) polimerase chain reaction (PCR) amplification of suitable
regions of the genome, sequence analysis of the amplicons obtained, and
alignment of the data with reference sequences is the usual and recommended
method.

Today, the concept of DNA barcoding arises as a molecular approach to
1dentify species. This concept 1s based on a DNA sequence that acts as a barcode
specific for each species (Hebert et al., 2003). In this way, the DNA barcode is a
short sequence of nucleotides taken from an appropriate part of an organism’s
genome that is used to identify it at species level.

Species identification by DNA barcoding is a sequencing-based
technology. Once obtained the sequence information of the target specimen it is
possible comparing this information to a sequence library from known species
(Hajibabaei et al., 2007). Nowadays, several libraries of DNA sequences can be
found. Some of these repositories are comprehensive and include sequences from

several segments of DNA (e.g. GenBank), but others are restricted to a specific

marker (e.g. BOLD) (see Chapter 3).
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The key point for any taxonomic system is its ability to deliver accurate
species identification and, according to Hebert et al. (2003), DNA barcoding

accurately 1dentified species in more than 95% of cases.

1.5.1 Nuclear DNA versus Mitochondrial DNA

Generally, the mitochondrial genome (mtDNA) of animals is a better
target for analysis than the nuclear genome because of its high copy number,
lack of introns, its limited exposure to recombination and its haploid mode of
inheritance (Hebert et al., 2003) and therefore, have an increased chance of
generating species-specific markers (Harvey et al., 2003). In animals, mtDNA
occurs as a single double-helical circular molecule containing 13 protein-coding
genes, 2 ribosomal genes, a non-protein coding control region, and several
transference RNAs. Each mitochondrion contains several such circular molecules
and, therefore, several complete sets of mitochondrial genes. Furthermore, each
cell has several mitochondria. Thus, when sample tissue is limited, the
mitochondrion offers a relatively abundant source of DNA (Waugh, 2007).
Consequently, these features make the mtDNA clearly advantageous to forensic

studies where material may be only fragments or poorly preserved.

1.5.2 Cytochrome c oxidase subunit I (COI) as DNA barcoding marker

The efficacy of DNA barcoding depends on selection of a suitable segment
of DNA. Indeed, its mutation rate must be slow enough so that intraspecific
variation is minimised but sufficiently rapid to highlight interspecific variation,
it must be relatively easy to collect, and should have as few insertions or
deletions as possible to facilitate sequence alignment (Hebert et al., 2003).

In 2003, Herbert et al. published a study in which they suggest the use of
cytochrome c oxidase I as the suitable DNA marker to DNA barcoding.

Eukaryotic cytochrome ¢ oxidase, the last enzyme of the mitochondrial

respiratory chain, is highly conserved across species that employ oxidative
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phosphorylation for metabolism and is a multimeric enzyme of dual genetic
origin. The subunits I, II and III are large transmembrane proteins, highly
hydrophobic, encoded in mitochondrial genome (Figure 4). The remaining small
subunits that surround the core of the enzyme are encoded in the nuclear
genome (Fontanesi et al.,, 2008). Cytochrome c¢ oxidase subunit I (COI), the
catalytic subunit of the enzyme, is predominantly imbedded in the membrane of
the mitochondrial crista. The nucleotides of the gene that codes for it show
sufficient variation to differentiate between species (Waugh, 2007). Indeed,
Hebert et al. (2003) says that COI have two important advantages: (1) the
universal primers for this gene are very robust, enabling recovery of its 5’ end
from representatives of most, if not all, animal phyla and (2) COI appears to
possess a greater range of phylogenetic signal than any other mitochondrial gene
(the evolution of this gene is rapid enough to allow the discrimination of not only

closely allied species, but also phylogeographic groups within a single species).

Figure 4. Gene map of the D. yakuba mtDNA molecule (From: Clary and Wolstenholme, 1985).

However, according to Frézal and Leblois (2008), the DNA barcoding

shows some crucial pitfalls. First, the existence of under-described fraction of
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biodiversity complicate the identification of unknown specimens, since the
individuals chosen to represent each taxon in the reference database could not
cover all of existing diversity in this taxon. Second, the inherent risks due to
mitochondrial inheritance can lead to over- or underestimate sample divergence
and render conclusions on species status unclear. Indeed, heteroplasmy (i.e. the
presence of a mixture of more than one type of mitochondrial genome within a
single individual), and maternally transmitted bacteria (e.g. Wolbachia,
Whitworth et al., 2007) can cause misleading processes in identification. Third,
nuclear mitochondrial pseudogenes (NUMTSs), this i1s non-functional copies of
mitochondrial DNA sequences translocated into the nuclear genome (Song et al.,
2008), could mimic mitochondrial copies of COI introducing ambiguity into the
barcoding and lead to disturbances in specimens’ identification. Fourth, the rate
of evolution in COI marker, since the evolution rate is not equal for all living
species, can lead to a lack of resolving power. Finally, the intra-specific
geographical structure can generate high rates of intra-specific divergence that
can blur and distort species delineation.

Despite these shortcomings, DNA barcoding may prove to be an efficient
tool for rapid assessment of taxonomic diversity, especially in species groups that
are otherwise difficult to study (Linares et al., 2009) and, consequently, could be

very helpful in forensic entomology investigations (see Chapter 2).

1.6 Framing in Master degree

The difficulties in morphological identification of some insects and the
possible association of these to a forensic context show the necessity of molecular
1dentification of species found in these scenarios.

The content of this dissertation intents to understand the importance of
Forensic Biology, both in the areas of Molecular Biology and Genetics, and in

Forensic Entomology either when applied to legal and criminal research.
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Under the master's degree in Biologia Humana e Ambiente, this work
comes as a contribution to cover the gap in forensic entomology in Portugal,
particularly in the molecular systematic characteristic of insects. Moreover this
will be the first step in the creation of the National Molecular Database of
insects’ species with forensic relevance based on a new concept for species

1dentification, the DNA barcoding.

1.7 Main goals

In Portugal, forensic entomology is still a very undeveloped area and this
study appears to cover this gap.

For purposes of this study, we will focus our attention in medicolegal and
wildlife forensic entomology, because the involvement of insects in decomposition
of cadavers.

Thereby, the main goals of this study are:

« determine the DNA barcoding sequences of some insects’ species
(previously identified by morphological methods);

. test the effectiveness of the COI for the identification;

. evaluate if the databases that currently exist (e.g. GenBank from
NCBI; BOLD from CBOL) are able to identify species with forensic relevance
based on COI sequence;

. contribute to the implementation of a National Molecular Database
applicable for Portugal area.

Despite these main objectives, this thesis aim the acquirement of
qualification in laboratorial practice and in analysis of the results obtained

during the laboratorial work.
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CHAPTER 2 — CYTOCHROME C OXIDASE I EFFECTIVENESS AS A

MARKER FOR INSECTS’ IDENTIFICATION

Abstract

The implementation of a molecular database of insects’ species is very
important step for the evolution of forensic entomology. Indeed, any country that
wishes to have an effective and scientifically well supported forensic entomology
service must have a comprehensive knowledge of insects’ diversity.

The widespread use of cytochrome c¢ oxidase I (COI) as the ideal
molecular marker for DNA barcoding project suggests that this approach could
be very useful as well in forensic scene, where rapid, precise species
1dentification tools are vital. Despite scientific and pragmatic advantages of
knowing the diversity of insects with forensic interest through the globe, the
implementation of such molecular database requires the establishment of its
ability to distinguish different species in forensics too.

Using four common fly species found to be forensically relevant
(Calliphora vicina, Calliphora vomitoria, Lucilia caesar and Musca autumnalis),
this study aimed to provide evidence of the COI performance to be used as an
effective, reliable and fast tool for an identification database.

The COI fragment proposed for DNA barcode was sequenced; then,
nucleotide sequence divergence within and between species and phylogenetic
analysis were performed.

Phylogenetic analyses show all species as strongly supported
monophyletic groups. The intraspecific divergence within Calliphora shows an
average value of 0.24% and average of interspecific divergence percentage
between these congeneric species was 4.9%. Highest interspecific divergence

values occur between M. autumnalis and the other three species. In fact, this
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species belongs to Mucidae while other three belongs to Calliphoridae, being
phylogenetically more distant.

According to our molecular data, this method appears to be an accurate
and robust technique for identifying at least these most common fly species with

forensic relevance.

Keywords: forensic science; database; forensic entomology; Diptera; cytochrome

c oxidase I; DNA barcoding.

1. Introduction

DNA barcoding is a new molecular tool useful in species discrimination,
which uses a small DNA fragment — known as DNA barcode — from a
standardized region of the genome (1). This fragment consists of a 658 bp string
corresponding to nucleotide positions 1490-2198 from the 5— end of cytochrome ¢
oxidase subunit I gene (COI) using Drosophila yakuba mitochondrial genome as
a reference (2).

Forensic entomology studies the interaction of insects and other
arthropods with dead bodies, and like other forensic sciences, is used for legal
purposes (3). Different insect species colonizing corpses have different biologies
(life-cycle, ecological preferences, distribution, etc.) and, based on this, a forensic
entomologist can provide answers for several questions in a crime scene:
estimation of postmortem interval (PMI), postmortem transfer, diagnosis of
poisoning, and neglect of living people (4). Since corpses’ colonization occurs by
successive waves and colonization pattern changes regionally and seasonally,
identifying which species colonize the corpse is the key for forensic entomologist
work. Thus, identification of insects collected from a corpse must be precise;
otherwise, erroneous developmental data application may result in an incorrect

PMI estimation (3).
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In this respect, species have been widely identified through the use of
mostly morphological criteria. Morphological identification consists in
anatomical character-based keys, only usable by few experts, to identify the
adults (or larvae and pupae in some cases) to species level. However, for most
groups, keys when available can be vague and the identification can become
difficult and almost impossible. In addition, larval stage is the most usually
found on corpses (5) and time-consuming rearing of this stage to adult for
identification may delay criminal investigation or cause significant problems
when rearing fails (6). Under these circumstances, species’ identification based
on molecular analysis can appears as a more suitable way for unknown
specimens’ identification. Compared with morphological identification, molecular
data acquisition arises as a less time consuming methodology and can also be the
only way to identify damaged organisms or fragments, very common in forensic
scenarios (7,8). Furthermore, molecular identification can be the only way when
there are no obvious means to match adults with immatures, and when
morphological traits do not clearly discriminate species (9).

Using DNA barcoding concept for insects’ species identification should be
taken into account three main criteria for species delimitation:

1) The use of a threshold value, to separate intraspecific from interspecific
variation, the so-called “barcoding gap” (1,10). For example, in insects,
genetic distance between different species almost always exceeds 3% (1);

2) The second criterion comes as an update of the previous, and suggests
that this threshold value should be ten times greater than the average of
intraspecific nucleotide distance for different animal species (11);

3) Finally, the monophyletic association of specimen within a species in a
phylogenetic analysis is required for a successful species’ identification
(12,13), that meaning each morphological species should appears in a
single monophyletic lineage (14). However, in spite of this method uses a
phylogenetic tree construction method, this should not be interpreted as

phylogenies, since DNA barcodes do not frequently demonstrate
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sufficient phylogenetic signal to determine evolutionary relationships

(15).

After sequencing, an unknown insect sequence can be compared with a
library of barcode reference sequences obtained from specimens of known
1dentity. If it matches with a high confidence level with a reference sequence, it
can be assumed that the unknown specimen belongs to the reference taxon
(species) or, at least, to the group with identical species. on the other hand, if the
unknown sequence does not match with any within the database, new data can
be recorded as a new haplotype or a geographical variant, or can suppose the
unveiling of a new species (6,15). Finally, information can be crossed with prior
knowledge regarding developmental stages of each species and ecological data,
and allows determination of relevant aspects with medicolegal purposes,
including PMI.

However, before assuming the use of COI as a molecular tool in forensic
entomology, it’s necessary to ascertain their suitability on insects’ species
1dentification. In this way, several specimens of Diptera, Calliphora vicina
(Robineau-Desvoidy, 1830), Calliphora vomitoria (Linnaeus, 1758), Lucilia
caesar (Linnaeus, 1758), all belonging to Calliphoridae, and Musca autumnalis
(De Geer, 1776), belonging to Muscidae, were sequenced with the intent to
evaluate COI effectiveness for implementation of this DNA barcoding marker in

databases for the identification of insect species with forensic interest.

2. Materials and Methods

2.1 Samples
Insect specimens used in this work were obtained in a previous study

(16). Samples were collected from mammalian carcasses air exposed, in Portugal

central region (Serra da Estrela mountains) during the winter, in 2008. Insects

25



DNA BARCODING AND FORENSIC ENTOMOLOGY: A MOLECULAR APPROACH FOR DIPTERA SPECIES’ IDENTIFICATION

Chapter 2 - Cytochrome c oxidase I effectiveness as a marker for insects’ identification

capture was held in pitfall and “Malaise” traps and specimens, subsequently,
were stored individually in 70% ethanol.

All samples were morphologically identified to species level by an expert
entomologist. These identifications unveiled specimens of four Diptera species:
Calliphora vicina (13 specimens), Calliphora vomitoria (12 specimens), Lucilia

caesar (8 specimens) and Musca autumnalis (19 specimens).

2.2 DNA extraction

DNA was extracted from 2-3 legs of each adult fly using E.Z.N.A.® Insect
DNA Isolation Kit (Omega Bio-Tek, USA) following manufacturer’s protocol with
an overnight incubation step. To maximize final yield of DNA, 45 uL of Elution
Buffer, preheated to 60 °C — 70 °C, was added and left to incubate for 30 - 50
minutes before centrifuging and collecting flow-through. Flow-through of the two
elutions was collected in two different microtubes. Specimens’ remains were

retained to check their identity if necessary.

2.3 Polymerase chain reaction (PCR)

COI barcoding region was amplified using primer pair LCO1490 (5
GGTCAACAAATCATAAAGATATTGG 3) and HCO2198 (5
TAAACTTCAGGGTGACCAAAAAATCA 3) (1,2).

Each 25 uLL PCR mixture contained 1X Colorless GoTaq® Flexi Reaction
Buffer (Promega, USA), 100 uM of dNTPs (Fermentas, USA), 2 mM MgCly, 0.4
uM of each primer, 0.32 pug of BSA, 0.02 U GoTaq® Flexi DNA Polymerase
(Promega, USA), 4-5 pLL of DNA extract, and water added to complete the
volume. PCR temperature cycles were carried out in a GeneAmp® PCR System
2700 thermocycler (Applied Biosystems, USA) and consisted of an initial
denaturation step at 94 °C for 1 minute, followed by 5 cycles of 94 °C for 30
seconds, 45 °C for 1 minute, and 72 °C for 1 minute, and 35 cycles of 94 °C for 1

minute, 50 °C for 1 minute and 30 seconds, and 72 °C for 1 minute. The last cycle
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was followed by 5 minutes at 72 °C to complete any partially synthesized strands
(adapted from (1)). Amplified products were stored at 4 °C in the original PCR
mix. All PCR products checked for bands in a 1.5% agarose electrophoresis gel
stained with RedSafe (INtRON Biotechnology, Korea) through UV
transillumination.

PCR products were purified with SureClean (Bioline, UK), according to

manufacturer’s instructions, and were stored at -20 °C.

2.4 Sequencing

DNA was sequenced in both forward and reverse directions for all
specimens using the same primers used in amplification. Sequencing reactions
were performed on purified PCR products with the BigDye® Terminator v3.1
Sequencing Kit (Applied Biosystems, USA), using a GeneAmp® PCR System
2700 thermocycler. Sequencing reactions conditions consist on an inicial
denaturation step at 96 °C for 1 minute, followed by 25 cycles of 10 seconds at 96
°C, 5 seconds at 50 °C, and 4 minutes at 60 °C. Then, each reaction (10 pL) was
purified, transferring whole product to a clean 1.5 mL tube with 1 uL of 3 M
sodium acetate, pH 4.6 and 25 pl. of absolute ethanol. Mixture was then
incubated in ice for 30 minutes and centrifuged at maximum speed for 25
minutes. Supernatant was discarded, 300 uL of 70% ethanol was added to the
pellet, and tubes were centrifuged for another 15 minutes. This last step was
repeated once, after which supernatant was discarded completely and samples
air-dried away from light.

Sequencing products were then analyzed using ABI PRISM 310 Genetic
Analyzer (Applied Biosystems, USA).

When this step wasn’t possible to undertaken in our laboratory, samples

were sent away for sequencing in a sequencing company (Macrogen Inc., Korea).
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2.5 Sequence analysis

Sequence chromatograms obtained were edited and differences between
forward and reverse sequences were resolved using Sequencher® v4.0.5 software
(Gene Codes Corp., USA). Before analysis, all sequences were identified with
GenBank BLASTn search engine (17) to confirm morphological identification.
Additional COI sequence of Hypoderma lineatum (Viller, 1789) mitochondrial
genome (accession number NC_013932) was obtained from public DNA database
GenBank (18) to be used as outgroup in all analyses.

Sequences obtained in this study were aligned using ClustalX v2.0.12
(19), and BioEdit Sequence Alignment Editor v7.0.5.3 (20) was used to prepare
the alignment file for posterior analyses. This file was then converted to NEXUS
format with Concatenator v1.1.0 software (21) to be used in sequence divergence
and phylogenetic analyses.

Optimal model of nucleotide substitution for the data was determined
using Modeltest v3.7 (22) performed in PAUP* v4.0b10 (23) according to Akaike
information criterion (AIC). General time-reversible with gamma distribution
shape parameter (GTR+G) model was shown as the most suitable for data
analysis.

Phylogenetic analyses were carried out in PAUP* software using
Maximum Parsimony (MP), Neighbor-Joining (NJ) and Maximum Likelihood
(ML) methods, and in MrBayes v3.1.2 (24) for Bayesian analysis.

MP analysis was conducted using the heuristic search procedure (Tree
Bisection and Reconnection algorithm, TBR) with a maxtree setting of 100 trees
to find the most parsimonious trees. Bootstrap values of MP analysis (1000
replicates) were obtained under the heuristic search procedure.

A NJ tree was constructed using GTR+G model and 1000 bootstrap
replicates were used to calculate support for nodes.

For ML analysis GTR+G model was also used with 1000 bootstrap

replicates and 1 replicate for tree base construction.
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Bayesian analysis was carried out using Monte Carlo Markov Chain
method (MCMC) implemented in MrBayes (25). This Bayesian inference analysis
was conducted using one cold and three hot chains, and GTR+G model, was
choosed by MrModeltest v2.3 (26) as the best model for this analysis (according
to AIC). During 1.500.000 generations, sampling was made every 100
generations and, to evaluate when stationary had been reached, likelihood scores
from every 100 generations was plotted. From plots, it appeared that burn-in
phase was completed by 30.000 generations.

To visualize tree different appearances was used TreeViewX version 0.5.1
software (27).

To study intra versus interspecific variability, uncorrected (p-distance)
and corrected (Maximum Likelihood model) distances were calculated under in

PAUP*, for COI fragment of 658 bp.

3. Results

A 658 bp fragment of mitochondrial COI gene was successfully amplified
and sequenced for 52 different fly species.

Identification of all sequences, in the GenBank database, showed
incongruences in morphological and molecular identifications of the Musca
autumnalis. If on one hand these were previously identified as Musca domestica,
our Blast analysis places them as M. autumnalis.

Aligning all sequences did not show any insertion or deletion. Data

revealed 150 variable positions, of which 109 are parsimoniously informative.

3.1 Species identification

ML tree representing mitochondrial genetic differentiation of C. vicina,
C. vomitoria, L. caesar and M. autumnalis species, based upon COI data, 1s

shown in Figure 5. This tree is topologically identical to trees obtained using NdJ,
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MP and Bayesian methods. Phylogenetic support for individual species nodes
was high (>99%) across all four methods, despite minor differences in overall
topology.

Hypoderma lineatum (Diptera, Oestridae), used as outgroup, was clearly
separated from Muscidae and Calliphoridae families in all analyses (Figures A1—
A4, Appendix A). These two families are themselves distinct and appear
monophyletic. Bootstrap values to these two families were 100% to Muscidae in
all analyses and greater than 87.5% to Calliphoridae in NJ and MP analyses,
despite ML analysis showed weak support (only 59.7% bootstrap). Calliphorid
species were correctly assigned to sub-families Calliphorinae (C. vicina and C.
vomitoria) and Luciliinae (L. caesar). The two species in Calliphora genus were
grouped with high bootstrap support (>96.5% to C. vicina and >94.7% to C.
vomitoria) and both species are clearly distint. Both specimens of M. autumnalis
and L. caesar formed single clusters with 100% support in all analyses. Within
each clade there is some variation, although this is not strongly supported by
bootstrap values (<95%). Only L. caesar3d and L. caesar4 formed a group with

bootstrap value greater than 96.8% (Figures A1-A4, Appendix A).

3.2 Intraspecific variation

Distance matrix (Table 1), based on the analysed 658 bp, revealed the
percentage of nucleotide divergence values within and between among taxa.
Values for intraspecific divergence with uncorrected distances (p-distance)
showed a minimum of 0% for all four species and maximum reached 0.7, 0.67,
0.54 and 1.00% to M. autumnalis, C. vicina, C. vomitoria and L. caesar,
respectively. Corrected distances (ML distances) revealed intraspecific
divergence within four analyzed species range between 0 and 0.71% to M.
autumnalis, 0 and 0.68% to C. vicina, 0 and 0.54% to C. vomitoria and between 0

and 1.04% to L. caesar (Tables A1-A2, Appendix A).

30



DNA BARCODING AND FORENSIC ENTOMOLOGY: A MOLECULAR APPROACH FOR DIPTERA SPECIES’ IDENTIFICATION

Chapter 2 - Cytochrome c oxidase I effectiveness as a marker for insects’ identification

M, autumnalis]

. autumnalis2

, autumnalisd

M. autumnalisd

M. autumnaliss

M. autumnalisé

, autumnalis?

M. autumnalis8

M. autumnalis9

M. autumnalisl(

M. autumnalis

M, autumnalis

100/100/100/1.00 M autumnalisl.

M. autumnalis

/8 autumnahs15

M. autumnalis16
M. autumnalisl7
M. autumnalisi8

M. autumnalis19

. vicinal
vwma2a3
C. viein
C. vicina4
. vicingd
. vicinab
C. vieina7
C. viein
C, vicina9

. DICIRG.
C. vicinall
C. vicinal2
C. vicinal3

100/100/96.5/1.00

/S / 100/100/100/ -

4

97.2/94/70/1.00

C. vomitorial
. vomitoria2
C. vomitoria3

. vomitoriad

. vomitoriad
8 vomiloriab

vomitoria7
C. vomitoria8
C. vomitoria9
C. vomitorial(
C. vomitoriall
C. vomitorial2

87.5/95/59.7/1.00

Hypoderma lineatum L. caesart

Figure 5. Maximum likelihood phylogram of 53 cytochrome ¢ oxidase I (COI) sequences from four Diptera
species (Musca autumnalis, Calliphora vicina, Calliphora vomitoria and Lucilia caesar) and one outgroup
(Hypoderma lineatum). Values on tree branches correspond to Neighbor-joining/Maximum
parsimony/Maximum likelihood/Bayesian inference analyses and indicate support for nodes. M = Musca; C

= Calliphora; L = Lucilia.

3.3 Interspecific variation
Table 1 shows COI nucleotide divergence level between species groups

used in analyses. Percentages of interspecific variation vary from 4.87 to 19.51%

(for corrected distances) and from 3.96 to 12.01% (for p-distance).
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Table 1. Percentage of divergence values within and between Musca autumalis, Calliphora vicina,
Calliphora vomitoria and Lucilia caesar species at cytochrome c¢ oxidase I (COI) region. Uncorrected
distances (p-distances) are shown on above the diagonal and corrected distances (maximum likelihood

distances) are on below the diagonal. Intraspecific divergence values are shown on the bold diagonals.

M. autumnalis C. vicina C. vomitoria L. caesar

0.16 12.01 11.05 6.19

M. autumnalis

C. vicina

C. vomitoria

L. caesar

In both cases, the smallest value corresponds to congeneric species, C.
vicina and C. vomitoria; between L. caesar/C. vicina and L. caesar/C. vomitoria
values are lower than between M. autumnalis and each of three other species;

and highest value was found between C. vicina and M. autumnalis.

4. Discussion

The purpose of this study was to evaluate whether COI barcode provides
sufficient resolution to identify different species of relevant Diptera found in
forensic scenarios.

According to the DNA barcode Consortium criteria, a species
1dentification requires monophyletic association of each species in a phylogeny
(12). Here, we performed a phylogenetic analysis using four statistical methods,
NJ, MP, ML and Bayesian inference which delivered each species as a
monophyletic group, with strong bootstrap support (Figure 1). The high support
values for each species node show the COI marker potential to be used in species
discrimination, which is the fundamental premise of the DNA barcoding project.
Although the COI barcode region, by itself seems do not be enough to deliver a
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strong phylogenetic signal, phylogenies or resolve taxonomic associations, it
seems to hold enough ability to clearly distinguish these four forensic relevant
species.

The existence of a threshold value to discriminate species is another
criterion used in DNA barcoding approaches. This criterion can be based on a 3%
value for threshold or in a 10x or greater among versus within species nucleotide
distances. In this study, intraspecific divergence within Calliphora species at
COI region shows an average value of 0.24% (0.23% for uncorrected distances).
According to 10x criterion this should correspond to a maximum sequence
divergence of 2.4% (or 2.3%) as a threshold. In both cases, 2.4% and 3%
thresholds, congeneric species can be distinguished, because average of
interspecific divergence percentage (4.9% or 4.0%, in uncorrected distances) is
greater than these two threshold values.

Additionally, it is possible to observe that the higher wvalue of
Iintraspecific variation correspond to L. caesar (Table 1). This observation
confirms the apparent variation observed (with high bootstrap value) in the clade
of this species (Figures A1-A4, Appendix A). Regarding the interspecific
variation, lower values of divergence are observed between two congeneric
species (C. vicina and C. vomitoria). Since they belong to the same genus, they
are phylogenetically closest and have higher genetic similarities. Similarly,
highest interspecific divergence values occur between M. autumnalis and the
other three species. Because they belong to different families (M. autumnalis
belongs to Muscidae; Calliphora spp. and L. caesar to Calliphoridae), these

species are phylogenetically more distant.

5. Conclusions

The main aim of this study was to evaluate COI effectiveness as a
marker for the correct identification of forensically relevant insects’ species. Our

results suggest that this COI region can be suitable for forensic relevant insects’
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species identification, namely, the most common flies present. In agreement with
the DNA barcoding initiative, our data shows that the use of thresholds (1,11)
and monophyletic situation of species (12) allows a correct species identification.
Additionally, COI proved straightforward in amplification and
sequencing. This advantage facilitates rapid generation of an unknown specimen
sequence and subsequent identification. This much strengthens the use of this
region as a molecular tool in forensic entomology studies and other situations

featuring Diptera of applied importance.
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CHAPTER 3 — FORENSIC RELEVANT INSECTS’ IDENTIFICATION

THROUGH GENBANK AND BOLD DATABASES

Abstract

The existence of entomological evidences can be of great importance to
forensic cases. Indeed, this can provide relevant information to delineate the
course of the investigation; therefore, the species-level identification of
specimens found on corpse is extremely important. The Barcode of Life Data
System (BOLD) is a new tool for management of DNA barcoding data. The
1dentification system of BOLD 1is the functional unit for identification of
specimens by pasting their sequence and compared this with sequence reference
from known specimens, like used in others databases (e.g. GenBank from NCBI).
In this way, this study arises to determine to what extent these databases are
able to identify insects’ species with forensic relevance. Additionally, the
effectiveness of COI marker to purposes of DNA barcoding was evaluate. The
results showed that GenBank allowed to identify more sequences than BOLD,

and also proved the potential of COI as barcode sequence.

Keywords: forensic science; forensic entomology; database; Barcode of Life Data

system; DNA barcoding; GenBank.

1. Introduction

A death body is a large food source for a range of organisms and supports
a large and quickly changing fauna as it decomposes (1). Insects are generally

the first organisms to colonize the corpse and they have been used as indicators
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to determine postmortem interval (PMI). For forensic entomology purposes, its
identification at species-level is mandatory.

The molecular genotyping methods could benefit the indispensable
1dentification of insects’ species in forensic cases. In fact, the disadvantages of
the morphological identification process can be opposed by the speed and
simplicity of molecular analysis, and make this the best method for forensic
relevant species’ identification.

In 2003, Hebert and colleagues suggest the existence of a universal
sequence of DNA to identify species. This sequence, known as the barcode
sequence, 1s the pillar for a new concept already widely spread: the DNA
barcoding (2). These authors also propose a 658-bp mitochondrial genome region
— the cytochrome c¢ oxidase subunit I (COI) gene — as the primary barcode
sequence for members of animal kingdom.

The idea of a standardized molecular identification system emerged
progressively and revealed that the creation of an organization responsible by
management of the DNA barcoding data would be essential. Indeed, the
Consortium for the Barcode of Life (CBOL) is an international initiative that
supports the development of DNA barcoding and coordinates the collection of
DNA barcodes. The volume of information already existing soon after showed the
necessity to build a worldwide reference database for the molecular identification
of all eukaryotic species (3,4). However, that database to be a complete barcode
library for the animal kingdom will have to be about 100 million records (3). In
this way, CBOL initiate the construction of a new database with emphasis in
DNA barcode sequences, the Barcode of Life Data System (BOLD) -
www.barcodinglife.org. BOLD is a bioinformatics platform which aids the
acquisition, storage, analysis and publication of DNA barcode data (3), and is a
freely available resource for the DNA barcoding community. Unlike other well-
known sequence depositories (e.g. GenBank from NCBI), BOLD has an
Interactive interface where deposited sequences can be revised and

taxonomically reassigned (5).
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The Identification System of this platform (BOLD-IDS) allows matching
a DNA barcode sequence of an unknown specimen with an assembly of reference
libraries of barcode sequences for known species. In this way, it’s possible to
know which species a problem-specimen belongs to. However, the recovery of
species by this database could not be enough for all species discrimination.
Indeed, in September 2010, the total available DNA barcode sequences were at
789 488 sequences corresponding to 75 646 species (6), a number much lower
than the 100 million records previously mentioned.
In this way, this study arises to determine what extent the GenBank and
BOLD databases are able to identify insects’ species with forensic relevance.
Additionally, we also intend to demonstrate the effectiveness of COI marker in

Iinsects’ species identification.

2. Materials and Methods

2.1 Samples

The 68 samples (Table B1, Appendix B) included in this study were
obtained from two previous studies (7,8). The samples were collected from
vertebrate carcasses (air exposed) in Serra da Estrela Mountain (Portugal) and
Oeiras (Portugal) regions between December 2007 and dJuly 2008. The
entomological material was captured with pitfall, “Malaise” and “Schoenly”
traps. Then, the material was sorted, identified and stored individually in 70%
ethanol.

The specimens collected were identified only at family-level because of

morphological identification difficulties.
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2.2 DNA extraction

DNA extraction was performed using 2 or 3 adult legs, depending on
specimen size. Total genomic DNA was extracted using the E.Z.N.A.® Insect
DNA Isolation Kit (Omega Bio-Tek, USA). In the first step of the procedure,
samples were break down with a pestle without liquid nitrogen and, the
following steps were performed according to manufacturer’s protocol. However,
the elution of DNA was slightly modified to ensure maximum yield, with two
matrix incubations using 40 pL of Elution Buffer, preheated to 60 °C — 70 °C,
during 30 — 50 minutes and each elution was made to a different microtube.

For purposes of DNA barcoding, some part of the specimens remains

were preserved for replication of experiment if necessary.

2.3 Amplification

Initial amplification of a 658 bp 5’-end fragment of the mitochondrial COI
gene was carried out using the primer pair LCO1490 (5'-
GGTCAACAAATCATAAAGATATTGG-3) and HCO2198 (5’-
TAAACTTCAGGGTGACCAAAAAATCA-3) (2).

The PCR mixtures were made for a total volume of 25 puL. and consisted
in 1X Colorless GoTaq® Flexi Reaction Buffer (Promega, USA), 100 uM of dNTPs
(Fermentas, USA), 2 mM MgCls, 0.4 uM of each primer, 0.32 pg of BSA, 0.02 U
GoTaq® Flexi DNA Polymerase (Promega, USA), 4 uL of DNA, and water added
to complete the final volume. Failed amplifications were repeated under the
same conditions with 5 pL of genomic DNA.

PCR amplifications were performed in a GeneAmp® PCR System 2700
thermocycler (Applied Biosystems, USA), using the following conditions: 94 °C
for 1 minute, followed by 5 cycles of 94 °C for 30 seconds, 45 °C for 1 minute, and
72 °C for 1 minute, 35 cycles of 94 °C for 1 minute, 50 °C for 1 minute and 30
seconds, and 72 °C for 1 minute, and a final elongation for 5 minutes at 72 °C

followed by holding at 4 °C. For some specimens amplification, the temperature
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of annealing proved to be problematic and therefore optimization of the
annealing temperature was obtained and used to amplify those individuals. In
those cases, the PCR conditions consisted in an initial denaturation step for 1
minute at 94 °C, 94 °C for 1 min, 54 °C for 1 minute, and 72 °C for 1 minute for a
total of 40 cycles, and a final elongation step for 5 minutes at 72 °C (9).

The PCR amplicons were visualized in an agarose gel electrophoresis
(1.5%), stained with RedSafe (iINtRON Biotechnology, Korea) and under UV

transillumination.

2.4 Sequencing

Before sequencing, the PCR amplicons were purified with SureClean
(Bioline, UK), according to manufacturer’s instructions but with longer times of
incubation and centrifugation, and stored at -20 °C.

DNA sequencing was bi-directional for all specimens. The primers
combination used in this step were the same used in PCR amplification.
Sequencing reactions were performed using BigDye® Terminator v3.1
Sequencing Kit (Applied Biosystems, USA) according to the manufaturer’s
mstructions. The cycle sequencing was performed in a GeneAmp® PCR System
2700 thermocycler and consist in an inicial denaturation step at 96 °C for 1
minute, followed by 25 cycles of 10 seconds at 96 °C, 5 seconds at 50 °C, and 4
minutes at 60 °C. The purification of the reaction products were made according
to the following steps: transferring of reaction product to a new 1.5 mL microtube
containing a solution with 1 pL of 3 M sodium acetate (pH 4.6) and 25 uL of
absolute ethanol; incubate in ice during 30 minutes; centrifuge at maximum
speed for 25 minutes; discard supernatant; add 300 pL of 70% ethanol to the
pellet; centrifuge at maximum speed for 15 minutes; repeat the last three steps
once more; discard supernatant; air-dried the samples kept in the dark.

Sequencing chromatrograms were obtained with the ABI PRISM 310
Genetic Analyzer (Applied Biosystems, USA).
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2.5 Sequence analysis

Sequencing chromatograms were edited and corrected with Sequencher®
v4.0.5 software (Gene Codes Corp., USA).

The specimens are molecularly identified by pasting their sequence
record in both BLAST (Basic Local Alignment Search Tool) from NCBI’s
GenBank (10) and BOLD-IDS tool from BOLD Systems (6). In GenBank was
used the nucleotide blast program for basic BLAST. The parameters used for
BLAST were search in nucleotide collection database with MEGABLAST search,
which is the more appropriate for comparing a query to closely related
sequences. In BOLD the search was performed with BOLD-IDS tool for animal
1dentification (that use the COI barcode) in “Species Level Barcode Records”
search database and then, in “All Barcode Records on BOLD” search database
when the first failed in identification.

The sequences that allowed the species-level identification were used in
the next step. The alignment of Diptera sequences was carried out using the
ClustalX v2.0.12 (11) and the alignment file for analysis was prepared with
BioEdit Sequence Alignment Editor v7.0.5.3 (12). To avoid interferences in the
analyses due to lack of some nucleotides at the beginning and end of some
sequences, the sequences ends were cut. Analysis was, therefore, made with 593
bp from COI barcode fragment. To be used in sequence divergence and
phylogenetic analysis the file was to be converted to .NEXUS format with
Concatenator v1.1.0 program (13). The analyses was performed in PAUP*
v4.0b10 (14) and in MrBayes v3.1.2 (15) software.

The optimal model of nucleotide sequence divergence for Neighbor-
joining (NJ), Maximum Parsimony (MP) and Maximum Likelihood (ML)
analyses, was determined using Modeltest v3.7 (16) and performed in PAUP*.
According to Akaike information criterion (AIC) the General time-reversible +
Proportion Invariant + Gamma distribution shape parameter (GTR+I+G) model

was shown as the most suitable for the analysis. In Bayesian Inference analysis
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the best model was chosen with MrModeltest v2.3 (17) and performed in
MrBayes.

A NJ tree was obtained using the optimal model and the support for
nodes was calculated using 1000 bootstrap replicates.

The most parsimonious tree was obtained with MP analysis using the
heuristic search procedure (Tree Bisection and Reconnection algorithm, TBR)
with a maxtree setting of 1000 trees. The bootstrap values were calculate with
1000 replicates and were performed under the heuristic search procedure.

For ML analysis GTR+I+G model was also used with 1000 bootstrap
replicates and 10 replicates for tree base construction.

For Bayesian inference analysis, the Monte Carlo Markov Chain method
(MCMC) was used in MrBayes software (18). This analysis used one cold and
three heated chains with GTR+I+G model (obtain as the best model according to
AIC). The sampling was made every 100 generations during 1.500.000
generations and the likelihood scores were recorded until the stationary be
reached. These records shown that the burn-in phase was achieved by 30.000
generations.

The TreeViewX Version 0.5.1 software (19) was used to visualize the
phylograms obtained from all analyses.

Uncorrected (p-distance) and corrected (ML) distances were calculated
using the PAUP*, according to the best model previously defined, to evaluate

intra and interspecific variability for the 658 bp barcode region.

3. Results

A total of 68 sequences belonging to the initial portion of mitochondrial
COI gene were successfully sequenced.
The alignment of all sequences used in this study did not show any

insertion or deletion.
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3.1 GenBank and BOLD identifications

This study represents an effort to show the functionality and utility of
species identification with a DNA barcoding marker to successful discriminate
between the insects species investigated. The capacity of species identification
was estimated by comparing the 68 insects sequences, analyzed for COI marker,
through GenBank and BOLD databases (Table B1, Appendix B).

The Figure 6 shows the percentage of specimens identified according to
each database. With GenBank database 46 of 68 samples (67.6%) was
successfully identified to species-level with a maximum identity value greater
than 98%. The identification was unable to 19 samples and 3 samples revealed a
confused identification (the search showed two possible outcomes to the same
sequence). In BOLD search, 40 sequences (58.8% of total sequences) generate a
correct identification at species-level and 17 sequences (25%) identified only at
genus-level with a specimen similarity value greater than 99%, for both cases.
From this search has resulted 8 sequences without identification and 3 samples
with confuse identification (relatively to species-level identification.

In total, 49 specimens were identified belonging to 11 diferent species:
Eudasyphora cyanella (Meigen, 1826), Lucilia caesar (Linnaeus, 1758), Pollenia
rudis (Fabricius, 1794), Musca autumnalis (De Geer, 1776), Phaonia subventa
(Harris, 1780), Phaonia tuguriorum (Scopoli, 1763), Helina impucta (Fallén,
1825), Helina evecta (Harris, 1780), Helina reversio (Harris, 1780), Hydrotaea
dentipes (Fabricius, 1805) and Hydrotaea armipes (Fallén, 1825).

3.2 Species identification

The ML phylogram, showing bootstrap (from NJ, MP and ML analyses) and
posterior probability (obtained in Bayesian inference analysis) values, was
shown in Figure 7. NJ, MP, ML and Bayesian inference performed with
sequences identified to species-level showed identical tree topology (Figures B1—

B4, Appendix B). Dermestes lardarius (Coleoptera order), used as outgroup, was
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clearly separated from other specimens in all analyses. All analyses were
congruent in recognizing 8 lineages on data set, almost all with high bootstrap
support (in NJ, MP and ML) and posterior probability (in Bayesian
inference).Only Hydrotaea dentipes showed lower bootstrap value (52.2%) in NdJ

analysis. Indeed, all species were resolved as reciprocally monophyletic groups,
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Figure 6. Percentage of specimens identified according to GenBank (dark blue bars) and BOLD (light blue

bars) databases.

beside some variation can be observed within some groups. Phylogenetic
analyses also indicate that Phaonia subventa and Phaonia tuguriorum never
appeared associated as congeneric species. Beside this, these two congeneric
species ever were shown mixed with Helina evecta and Helina impucta. Helina
evectalHelina reversio and Helina impuctal/ Helina reversio congeneric pairs never
appears as associated at genus-level. In the other hand, Helina impucta/Helina
evecta ever appear associated as congeneric species. Only NdJ analysis showed
association between congeneric species Hydrotaea dentipes and Hydrotaea
armipes, with 100% bootstrap support. Lucilia caesar specimen was showed
alone in all analyses.

Table 2 compares the percentage of intraspecific and interspecific

nucleotide divergences between congeneric species. Comparing these values it’s
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possible to observe that, all intraspecific values are lower than 3% and the

interspecific percentages are much higher than this value. In the other hand, all

genera present an interspecific divergence percentage greater than its 10x

Iintraspecific divergence percentage.
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Figure 7. Maximum likelihood phylogram of 69 cytochrome ¢ oxidase I (COI) sequences from ten Diptera

species and one outgroup (Dermestes lardarius). Values on tree branches correspond to Neighbor-

joining/Maximum parsimony/Maximum likelihood/Bayesian inference and indicate support for nodes.
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Table 2. Summary of intra and interspecific percentages of nucleotide divergences at cytochrome c oxidase I

(p-distances and ML distances) of Phaonia, Helina and Hydrotaea genera.

p-distances ML distances
Intraspecific Interspecific Intraspecific Interspecific
Genus divergence divergence divergence divergence
Phaonia 0.05 14.55 0.05 16.81
Helina 0.63 9.96 0.64 11.16
Hydrotaea 0.16 8.07 0.16 8.83

4. Discussion

The comparison between the two molecular databases, GenBank and
BOLD, reveals that GenBank database can identify more query sequences than
BOLD database. This can be due to the fact that GenBank presents a most
comprehensive database than BOLD (this is a more recent and specific
database). Other fact can be associated with the BLAST search tools. These
databases use different algorithms to calculate the similarity between reference
and query sequences, and this can generate discrepancies in identification. In
GenBank search, the 98% was used as limit in species identification because was
observed that values below this delivery the query sequences to a different
species than the species showed with values greater than 98%. In BOLD search,
this value was 99%. According to this database species level match could not be
made with values lower than 99%, returning only the information which is the
nearest neighbor species.

Comparing the performance of these four tree-building methods it is
possible considered that all give similar results, recovering each species as a
monophyletic group. Moreover, almost all bootstrap and posterior probability
values were high showing the potential of this genetic marker to be used as a

trustworthy marker in species identification.
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However, some handicaps were observed in phylogenetic analysis. The
non-association revealed between some congeneric species questions the power of
this marker. Unfortunately, insufficient sequences of some species were
available for a more detailed analysis, and the lack of some information in
beginning and end of sequences may have interfered giving non-realistic results
(considering that the species taxonomic level are well defined). The outgroup
choice may also have interfered with the phylogenetic structure we would expect
with this dataset. This may be a too distant outgroup to give rise to a tree more
clearly defined.

The mean of intraspecific and interspecific variation values were
calculated only when two or more congeneric species exist. Keeping in attention
the threshold values given for species discrimination, 3% (2) and 10x
intraspecific divergence mean for each genus (20), the results showed that was
possible distinguish the two species of Phaonia (Phaonia subventa and Phaonia
tuguriorum), the two species of Hydrotaea (Hydrotaea dentipes and Hydrotaea
armipes), and the three species of Helina (Helina impucta, Helina evecta and
Helina reversion). Indeed, 0.05%, 0.64% and 0.16% of intraspecific variations
means for Phaonia, Helina and Hydrotaea are lower than 3% threshold. In the
other hand, reveal a threshold value of 0.5%, 6.4% and 1.6%, respectively (values
calculated by 10x rule) and, in all cases, these values were lower than means of
interspecific variation (16.81% for Phaonia, 11.16% for Helina and 8.83% for
Hydrotaea).

5. Conclusions

The greatest approach to identify an unidentified sequence is to notice if
that sequence already exists in a public database. The identification of Diptera’s
species with forensic relevance showed to be of extremely importance for the
investigation progress. As main aim, this study arises to determine what extent

the GenBank and BOLD databases are able to identify these species. It was
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possible to determine that these two databases allow identify a good percentage
of species with forensic interest. However, any effort that contributes to a better
understanding of biodiversity (in particular, with forensic interest; in general, for
the biodiversity quantification) is of utmost importance, and the implementation
of a new database comprehensive to this part of biological diversity, it’s a good
step in direction to this knowledge. The establishment of a standard protocol
may contribute to faster growth of this database. Consequently, here we also
tested the effectiveness of COI barcode to be used in a standard protocol. The
results support the potential of this genetic marker. However, more
comprehensive studies should be developed, with more samples and others

genetic markers, to overcome some difficulties encountered in this study.
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Chapter 4 — Final Considerations

FINAL CONSIDERATIONS

This study was the first molecular approach to assessing the potential of
DNA barcoding, especially of COI marker for its inclusion in a database of
species of forensic interest. In addition, a database of these adds knowledge of
biodiversity that can be used in other situations of ecological and conservationist
context. Indeed, Portugal is a country with a very particular geoclimatic
condition, and the survey of their biodiversity is extremely important because it
can reveal some unknown endemic species, and thus contribute to the global
understanding of biological diversity.

In this study, morphological identification was overpass by this
molecular approach in that morphological identification revealed a weakness in
1dentification of some species. The weakness of the morphological methodologies
refers mainly to the difficulty of observation of some morphological characters of
1dentification which can lead to an incorrect identification. Moreover, this
weakness reinforces the importance of molecular identification.

The successful amplification and sequencing of COI marker showed its
potential to be used in a standard protocol that quickly allows obtain the
sequences and subsequent identification of species. The importance of using a
well-supported protocol to be used as standard protocol in forensic investigation
services will facilitate the course of the investigation both in the context of

forensic medicine, whether in the context of attacks on wildlife destruction.
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Figure Al. Neighbor-joining phylogram of 53 cytochrome c¢ oxidase I (COI) sequences from four Diptera

species (Musca autumnalis, Calliphora vicina, Calliphora vomitoria and Lucilia caesar) and one outgroup

(Hypoderma lineatum). Bootstrap values indicate support for nodes among 1000 bootstrap replicates. M =

Musca; C = Calliphora; L = Lucilia.
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phylogram of heuristic search procedure (Tree Bisection and

Reconnection algorithm, TBR) for 53 cytochrome ¢ oxidase I (COI) sequences from four Diptera species

(Musca autumnalis, Calliphora vicina, Calliphora vomitoria and Lucilia caesar) and one outgroup

(Hypoderma lineatum). Bootstrap values indicate support for nodes among 1000 bootstrap replicates

(heuristic search procedure). M = Musca; C = Calliphora; L = Lucilia.
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Figure A3. Maximum likelihood phylogram of 53 cytochrome ¢ oxidase I (COI) sequences from four Diptera

species (Musca autumnalis, Calliphora vicina, Calliphora vomitoria and Lucilia caesar) and one outgroup

(Hypoderma lineatum). Bootstrap values indicate support for nodes among 1000 bootstrap replicates. M =

Musca; C = Calliphora; L = Lucilia.
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Tahble A1. Percentage of nucleotide sequence divergence (p-distances) at cytochroms ¢ codidase I (COT) region for Musea autumalis | Calliphora vicing , Calliphora vomitoria and Lucilia cossar species. M= Musea : C = Calliphora ; L = Lucilia; H = Hypoderma .
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Table A2 Percentage of nucleotide sequence divergence (ML distances) at cytochrome ¢ oxidase I {COI) region for Misco sutumalis, Calliphora vicing, Colliphors vomiteria and Lucilio coesar spedes. M = Musca; C = Calliphora: L= Luciio ; H = Hypoderma .
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Table B1. Molecular identification of samples used in this study (68 specimens) with GenBank and BOLD

databases.
Molecular identification
Sample i 3 i
P GenBank igﬁ‘t‘;‘t‘;“(‘;;] BOLD Si:gf;‘_::’;g“
AnlA Diptera sp. BOLD 99 Delia 100
AnlB Diptera sp. BOLD a9 Delia 100
AnlC Diptera sp. BOLD 100 Delia 100
An2 Diptera sp. BOLD 98 Delia 100
And Diptera sp. BOLD 100 Delia 100
And Diptera sp. BOLD 100 Delia 100
AnlIla Diptera sp. BOLD 92 ? ?
MusIIT1A Helina evecta 100 Helina evecta 100
MuslIII1B Helina evecta 98 Helina evecta 98,9
MusIII1C Helina evecta 100 Helina evecta 100
MusIV1 Eudasyphora eyanella 99 Eudasyphora evanella 99.8
MusIV2A Eudasyphora cyanella 99 Eudasyphora eyanella 99,9
MusIVZB Eudasyphora eyanella 100 Eudasyphora evanella 100
MuslV2C Luecilia caesar 100 Lucilia caesar 100
Hy3A Eudasyphora cyanella 99 Eudasyphora eyanella 99.7
Hy3B Eudasyphora eyanella 100 Eudasyphora evanella 100
Hy3C Eudasyphora cyanella 100 Eudasyphora eyanella 100
Hy3D Eudasyphora cyanella 100 Eudasyphora eyanella 100
Hy3E Eudasyphora cyanella 100 Eudasyphora eyanella 100
Hy3F Eudasyphora cyanella 100 Eudasyphora cyanella 100
Hy3G Eudasyphora cyanella 100 Eudasyphora cyanella 99,8
Hy3H Eudasyphora eyanella 100 Eudasyphora evanella 100
Hy3l Eudasyphora cyanella 100 Eudasyphora eyanella 100
Hy3.J Eudasyphora eyanella 9g Eudasyphora evanella 99,3
Chl Lueilia illustris/ Lucilia Caesar Lueilia illustris/Lucilia caesar
Pol Pollenia rudis 100 Pollenia 100
Po2A Pollenia rudis 99 Pollenia 99 36
Po2B Pollenia rudis a9 Pollenia 99,36
Pod Pollenia rudis 499 Pollenia 99,33
Pod Pollenia rudis 100 Pollenia 100
Po5A Pollenia rudis 100 Pollenia 100
Po5B Diptera sp. BOLD 90 ? ?
PocC Pollenia rudis 99 Pollenia 99,17
PosE Pollenia rudis 99 Pollenia 100
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Table B1 (cont.). Molecular identification of samples used in this study (68 specimens) with GenBank and
BOLD databases.

Molecular identification
Sample GenBank Maximum BOLD Specimen
identity (*a) similarity (%)
Phi Phaonia subvenia 99 Phaonia subventa 99,17
Ph2A Diptera sp. BOLD a0 ? ?
Ph2B Diptera sp. BOLD a0 ? ?
Ph2C Diptera sp. BOLD a0 ? ?
Ph3A Diptera sp. BOLD 93 Phaonia errans 93,94
Ph3B Diptera sp. BOLD 96 ? ?
Phd Phaonia subventa 99 Phaonia subventa 99,12
Phs Phaonia subventa 99 Phaonia subventa 99,1
Mul1l Musca autumnalis 499 Musca autumnalis 99,7
Mul3 Musea autumnalis 98 Musca autumnalis 99.7
Mul4 Musca autumnalis 99 Musca autumnalis 100
Mula Musca autumnalis 9g Musca autumnalis 99.7
MulI7 Muscina levida/Muscina assimilis Muscina levida/ Muscina assimilis
Mulls Muscina levida/Muscina assimilis Muscina levida/ Muscina assimilis
Mull9A Diptera sp. BOLD 98 Helina reversio 99
MullgB Diptera sp. BOLD a8 Helina 95
Mull9C Diptera sp. BOLD 98 Helina reversio 99
MullT10 Phaonia tugoriorum 98 Phaonia tuguriorum 100
Mulll11 Diptera sp. BOLD a0 ? ?
Mullll2 Helina impucta 98 Helina 98
Mulll13A Hydrotaea dentipes 99 Hydrotaea dentipes 100
MullT13B Hydrotaea dentipes 99 Hydrotaea dentipes 100
Mulll14A Phaonia tugoriorum 100 Phaonia tuguriorum 100
Mulll14C Phaonia tuguriorum 100 Phaonia tuguriorum 100
HylB Hydrotaea dentipes 100 Hydrotaea dentipes 100
HylC Hydrotaea dentipes 100 Hydrotaea dentipes 100
Hy1lD Hydrotaea dentipes 99 Hydrotaea dentipes 100
HylE Hydrotaea dentipes 100 Hydrotaea dentipes 100
HylF Diptera sp. BOLD 93 Hydrotaea armipes 100
Hy2A Hydrotaea dentipes 99 Hydrotaea dentipes 100
Hy2B Hydrotaea dentipes 100 Hydrotaea dentipes 100
Hy2C Hydrotaea dentipes 100 Hydrotaea dentipes 100
Hy2D Hydrotaea dentipes 100 Hydrotaea dentipes 100
Hy2E Diptera sp. BOLD 100 Museina 100
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Figure B1. Neighbor-joining phylogram of 69 cytochrome ¢ oxidase I (COI) sequences from ten Diptera

species and one outgroup (Dermestes

nodes among 1000 bootstrap replicates.

Bootstrap values indicate support for
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Figure B2. Maximum parsimony phylogram of heuristic search procedure (Tree Bisection and
Reconnection algorithm, TBR) for 69 cytochrome ¢ oxidase I (COI) sequences from ten Diptera species and
one outgroup (Dermestes lardarius). Bootstrap values indicate support for nodes among 1000 bootstrap

replicates (heuristic search procedure).
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Figure B3. Maximum likelihood phylogram of 53 cytochrome ¢ oxidase I (COI) sequences from ten Diptera
species and one outgroup (Dermestes lardarius). Bootstrap values indicate support for nodes among 1000

bootstrap replicates.
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Figure B4. Bayesian phylogeny of 69 cytochrome c oxidase I (COI) sequences from ten Diptera species and

one outgroup (Hypoderma lineatum). Values on tree branches indicate posterior probability for nodes.
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Tahle B2, Percentaze of aucleotde sequence divergence (p-diztances) at cytochrome ¢ omidase I(T0D) segion foxr ten Dipreza species. E = Eudasyphora ; L = Lacilio ; Po = Follenia ; Bl = Musca ; Ph = Phaonia ; He = Helinag ; Hy = Hydrotges .
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Tahble B2 Pereentapz of nucleotide sequence divergence (ML distances) at cytochrome c oxidase I (COL) region for ten Diptera specice. E = Eudasyphora; L= Lucilia ; Po = Pollenin ; M = Musea ; Ph = Phaonia; He = Heling ; Hy = Hydrofoas
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